Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 108: 104-110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336113

RESUMO

Invasive neuronal tract-tracing is not permitted in very large or endangered animals. This is especially the case in marine mammals like dolphins. Diffusion-weighted imaging of fiber tracts could be an alternative if feasible even in brains that have been fixed in formalin for a long time. This currently is a problem, especially for detecting crossing fibers. We applied a state-of-the-art algorithm of Diffusion-weighted imaging called Constrained Spherical Deconvolution on diffusion data of three fixed brains of bottlenose dolphins using clinical human MRI parameters and were able to identify complex fiber patterns within a voxel. Our findings indicate that in order to maintain the structural integrity of the tissue, short-term post-mortem fixation is necessary. Furthermore, pre-processing steps are essential to remove the classical Diffusion-weighted imaging artifacts from images: however, the algorithm is still able to resolve fiber tracking in regions with various signal intensities. The described imaging technique reveals complex fiber patterns in cetacean brains that have been preserved in formalin for extended periods of time and thus opens a new window into our understanding of cetacean neuroanatomy.


Assuntos
Golfinhos , Animais , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Neurônios , Formaldeído
2.
J Anat ; 244(4): 628-638, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38168875

RESUMO

Odontocetes primarily rely on fish, cephalopods, and crustaceans as their main source of nutrition. In the digestive system, their polygastric complex exhibits similarities to that of their closest terrestrial relatives such as cows, sheep, and giraffes, while the entero-colic tract shares similarities with terrestrial carnivores. The morphology, caliber, and structure of the odontocete intestine are relatively constant, and, since there is no caecum, a distinction between the small and large intestine and their respective subdivisions is difficult. To address this issue, we used the intestinal vascularization pattern, specifically the course and branching of the celiac artery (CA) and the cranial and caudal mesenteric arteries (CrMA and CdMA). A series of pictures and dissections of 10 bottlenose dolphins (Tursiops truncatus) were analyzed. Additionally, we performed a cast by injecting colored polyurethane foam in both arteries and veins to measure the caliber of the arteries and clarify their monopodial or dichotomous branching. Our results showed the presence of multiple duodenal arteries (DAs) detaching from the CA. The CrMA gave origin to multiple jejunal arteries, an ileocolic artery (ICA), and, in six cases, a CdMA. In four specimens, the CdMA directly originated from the abdominal aorta. The ICA gave rise to the mesenteric ileal branches (MIB) and mesenteric anti-ileal branches and the right colic arteries (RCA) and the middle colic arteries. From the CdMA originated the left colic and cranial rectal arteries (LCA and CrRA). The measurements revealed a mixed monopodial and dichotomous branching scheme. The analysis of the arteries and their branching gave us an instrument, based on comparative anatomy, to distinguish between the different intestinal compartments. We used the midpoint of anastomoses between MIB and RCA to indicate the border between the small and the large intestine, and the midpoint of anastomoses between LCA and CrRA, to tell the colon from the rectum. This pattern suggested an elongation of the duodenum and a shortening of the colic tract that is still present in this species. These findings might be related to the crucial need to possess a long duodenal tract to digest prey ingested whole without chewing. A short aboral part is also functional to avoid gas-producing colic fermentation. The rare origin of the CdMA on the CrMA might instead be a consequence of the cranial thrust of the abdominopelvic organs related to the loss of the pelvic girdle that occurred during the evolution of cetaceans.


Assuntos
Golfinho Nariz-de-Garrafa , Cólica , Feminino , Animais , Bovinos , Ovinos , Intestinos , Artérias Mesentéricas/anatomia & histologia , Veias
3.
Anat Histol Embryol ; 53(1): e12986, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843436

RESUMO

The Mediterranean monk seal (Monachus monachus, Hermann, 1779) is an endangered species of pinniped endemic to few areas of the Mediterranean Sea. Extensive hunting and poaching over the last two centuries have rendered it a rare sight, scattered mainly in the Aegean Sea and the western coast of North Africa. In a rare event, a female monk seal calf stranded and died in southern Italy (Brindisi, Puglia). During due necropsy, the brain was extracted and fixed. The present report is the first of a monk seal brain. The features reported are remarkably typical of a true seal brain, with some specific characteristics. The brain cortical circonvolutions, main fissures and the external parts are described, and an EQ was calculated. Overall, this carnivore adapted to aquatic life shares some aspects of its neuroanatomy and physiology with other seemingly distant aquatic mammals.


Assuntos
Caniformia , Monges , Focas Verdadeiras , Feminino , Animais , Humanos , Focas Verdadeiras/anatomia & histologia , Encéfalo , Espécies em Perigo de Extinção
4.
Brain Struct Funct ; 228(8): 1963-1976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660322

RESUMO

Cetaceans are well known for their remarkable cognitive abilities including self-recognition, sound imitation and decision making. In other mammals, the prefrontal cortex (PFC) takes a key role in such cognitive feats. In cetaceans, however, a PFC could up to now not be discerned based on its usual topography. Classical in vivo methods like tract tracing are legally not possible to perform in Cetacea, leaving diffusion-weighted imaging (DWI) as the most viable alternative. This is the first investigation focussed on the identification of the cetacean PFC homologue. In our study, we applied the constrained spherical deconvolution (CSD) algorithm on 3 T DWI scans of three formalin-fixed brains of bottlenose dolphins (Tursiops truncatus) and compared the obtained results to human brains, using the same methodology. We first identified fibres related to the medio-dorsal thalamic nuclei (MD) and then seeded the obtained putative PFC in the dolphin as well as the known PFC in humans. Our results outlined the dolphin PFC in areas not previously studied, in the cranio-lateral, ectolateral and opercular gyri, and furthermore demonstrated a similar connectivity pattern between the human and dolphin PFC. The antero-lateral rotation of the PFC, like in other areas, might be the result of the telescoping process which occurred in these animals during evolution.


Assuntos
Golfinho Nariz-de-Garrafa , Animais , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Encéfalo , Algoritmos , Cognição
5.
Animals (Basel) ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38200796

RESUMO

Cetaceans have undergone profound sensory adaptations in response to their aquatic environment during evolution. These adaptations are characterised by anatomo-functional changes in the classically defined sensory systems, shaping their neuroanatomy accordingly. This review offers a concise and up-to-date overview of our current understanding of the neuroanatomy associated with cetacean sensory systems. It encompasses a wide spectrum, ranging from the peripheral sensory cells responsible for detecting environmental cues, to the intricate structures within the central nervous system that process and interpret sensory information. Despite considerable progress in this field, numerous knowledge gaps persist, impeding a comprehensive and integrated understanding of their sensory adaptations, and through them, of their sensory perspective. By synthesising recent advances in neuroanatomical research, this review aims to shed light on the intricate sensory alterations that differentiate cetaceans from other mammals and allow them to thrive in the marine environment. Furthermore, it highlights pertinent knowledge gaps and invites future investigations to deepen our understanding of the complex processes in cetacean sensory ecology and anatomy, physiology and pathology in the scope of conservation biology.

6.
Front Neuroanat ; 17: 1330384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250022

RESUMO

Introduction: The auditory system of dolphins and whales allows them to dive in dark waters, hunt for prey well below the limit of solar light absorption, and to communicate with their conspecific. These complex behaviors require specific and sufficient functional circuitry in the neocortex, and vicarious learning capacities. Dolphins are also precocious animals that can hold their breath and swim within minutes after birth. However, diving and hunting behaviors are likely not innate and need to be learned. Our hypothesis is that the organization of the auditory cortex of dolphins grows and mature not only in the early phases of life, but also in adults and aging individuals. These changes may be subtle and involve sub-populations of cells specificall linked to some circuits. Methods: In the primary auditory cortex of 11 bottlenose dolphins belonging to three age groups (calves, adults, and old animals), neuronal cell shapes were analyzed separately and by cortical layer using custom computer vision and multivariate statistical analysis, to determine potential minute morphological differences across these age groups. Results: The results show definite changes in interneurons, characterized by round and ellipsoid shapes predominantly located in upper cortical layers. Notably, neonates interneurons exhibited a pattern of being closer together and smaller, developing into a more dispersed and diverse set of shapes in adulthood. Discussion: This trend persisted in older animals, suggesting a continuous development of connections throughout the life of these marine animals. Our findings further support the proposition that thalamic input reach upper layers in cetaceans, at least within a cortical area critical for their survival. Moreover, our results indicate the likelihood of changes in cell populations occurring in adult animals, prompting the need for characterization.

7.
Vet Sci ; 9(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36548853

RESUMO

The importance of assessing neurochemical processes in the cetacean brain as a tool for monitoring their cognitive health and to indirectly model human neurodegenerative conditions is increasingly evident, although available data are largely semiquantitative. High-resolution MRI for post-mortem brains and stereology allow for quantitative assessments of the cetacean brain. In this study, we scanned two brains of bottlenose dolphins in a 7-Tesla (7T) MR scanner and assessed the connectivity of the inferior colliculi and ventral cochlear nuclei using diffusion tensor imaging (DTI). Serial thick sections were investigated stereologically in one of the dolphins to generate rigorous quantitative estimates of identifiable cell types according to their morphology and expression of molecular markers, yielding reliable cell counts with most coefficients of error <10%. Fibronectin immunoreactivity in the dolphin resembled the pattern in a human chronic traumatic encephalopathy brain, suggesting that neurochemical compensation for insults such as hypoxia may constitute a noxious response in humans, while being physiological in dolphins. These data contribute to a growing body of knowledge on the morphological and neurochemical properties of the dolphin brain and highlight a stereological and neuroimaging workflow that may enable quantitative and translational assessment of pathological processes in the dolphin brain in the future.

8.
Brain Struct Funct ; 227(5): 1871-1891, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35347401

RESUMO

Areas dedicated to higher brain functions such as the orbitofrontal cortex (OFC) are thought to be unique to hominidae. The OFC is involved in social behavior, reward and punishment encoding and emotional control. Here, we focused on the putative corresponding area in the sheep to assess its homology to the OFC in humans. We used classical histology in five sheep (Ovis aries) and four chimpanzees (Pan troglodytes) as a six-layered-cortex primate, and Diffusion Tensor Imaging (DTI) in three sheep and five human brains. Nissl's staining exhibited a certain alteration in cortical lamination since no layer IV was found in the sheep. A reduction of the total cortical thickness was also evident together with a reduction of the prevalence of layer one and an increased layer two on the total thickness. Tractography of the sheep OFC, on the other hand, revealed similarities both with human tracts and those described in the literature, as well as a higher number of cortico-cortical fibers connecting the OFC with the visual areas in the right hemisphere. Our results evidenced the presence of the basic components necessary for complex abstract thought in the sheep and a pronounced laterality, often associated with greater efficiency of a certain function, suggested an evolutionary adaptation of this prey species.


Assuntos
Imagem de Tensor de Difusão , Neuroquímica , Animais , Encéfalo , Imagem de Tensor de Difusão/métodos , Humanos , Pan troglodytes , Córtex Pré-Frontal/diagnóstico por imagem , Ovinos
9.
J Anat ; 238(4): 942-955, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099774

RESUMO

Vibrissae are tactile hairs found mainly on the rostrum of most mammals. The follicle, which is surrounded by a large venous sinus, is called "follicle-sinus complex" (FSC). This complex is highly innervated by somatosensitive fibers and reached by visceromotor fibers that innervate the surrounding vessels. The surrounding striated muscles receive somatomotor fibers from the facial nerve. The bottlenose dolphin (Tursiops truncatus), a frequently described member of the delphinid family, possesses this organ only in the postnatal period. However, information on the function of the vibrissal complex in this latter species is scarce. Recently, psychophysical experiments on the river-living Guiana dolphin (Sotalia guianensis) revealed that the FSC could work as an electroreceptor in murky waters. In the present study, we analyzed the morphology and innervation of the FSC of newborn (n = 8) and adult (n = 3) bottlenose dolphins. We used Masson's trichrome stain and antibodies against neurofilament 200 kDa (NF 200), protein gene product (PGP 9.5), substance P (SP), calcitonin gene-related peptide, and tyrosine hydroxylase (TH) to characterize the FSC of the two age classes. Masson's trichrome staining revealed a structure almost identical to that of terrestrial mammals except for the fact that the FSC was occupied only by a venous sinus and that the vibrissal shaft lied within the follicle. Immunostaining for PGP 9.5 and NF 200 showed somatosensory fibers finishing high along the follicle with Merkel nerve endings and free nerve endings. We also found SP-positive fibers mostly in the surrounding blood vessels and TH both in the vessels and in the mesenchymal sheath. The FSC of the bottlenose dolphin, therefore, possesses a rich somatomotor innervation and a set of peptidergic visceromotor fibers. This anatomical disposition suggests a mechanoreceptor function in the newborns, possibly finalized to search for the opening of the mother's nipples. In the adult, however, this structure could change into a proprioceptive function in which the vibrissal shaft could provide information on the degree of rotation of the head. In the absence of psychophysical experiments in this species, the hypothesis of electroreception cannot be rejected.


Assuntos
Golfinho Nariz-de-Garrafa/anatomia & histologia , Vibrissas/inervação , Animais , Animais Recém-Nascidos , Evolução Biológica , Golfinho Nariz-de-Garrafa/crescimento & desenvolvimento , Feminino , Masculino , Vibrissas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...